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ABSTRACT 
Tracking is widespread in education systems across the world. In U.S. post-secondary education alone, at 
least 71% of colleges use a test to track students into various courses. However, there are concerns that 
placement tests lack validity and unnecessarily reduce education opportunities for students from under-
represented groups. While research has shown that tracking can improve student learning, inaccurate 
placement has consequences: students face misaligned curricula and must pay tuition for remedial courses 
that do not bear credits toward graduation. We develop an alternative system that uses algorithms to 
predict college readiness and track students into courses. Compared to the most widely-used placement 
tests in the country, the algorithms are more predictive of future performance. We conduct an experiment 
across seven colleges to evaluate the effects of algorithmic placement. Placement rates into college-level 
courses increase substantially without reducing pass rates. Algorithmic placement generally, though not 
always, narrows differences in college placement rates and remedial course taking across demographic 
groups. We use the experimental design and variation in placement rates to assess the disparate impact of 
each system. Test scores exhibit substantially more discrimination than algorithms; a significant share of 
test-score disparities between Hispanic or Black students and White students is explained by unwarranted 
disparities. We also show that the selective labels problem nearly doubles the prediction error for college 
English performance but has almost no impact on the prediction error for college math performance. A 
detailed cost analysis shows that algorithmic placement is socially efficient: it increases college credits 
earned while saving costs for students and the government yielding an infinite Marginal Value of Public 
Funds. 
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1. Introduction 

Tracking students by prior test scores is widespread in education systems around the 
world. In U.S. higher education alone, at least 71% of post-secondary institutions use 
test scores to track students (Fields and Parsad, 2012; National Center for Public Policy 
and Higher Education and Southern Regional Education Board, 2010).1 These rates are 
higher in two-year colleges, which enroll nearly half of all post-secondary students but 
fewer than 40% of whom receive any credential (Bound et al., 2010; Chen, 2016; 
Denning et al., 2022; Fields and Parsad, 2012).2 While research has demonstrated large 
potential benefits of tracking (Banerjee et al., 2016; Banerjee et al., 2017; Banerji and 
Chavan, 2016; Card and Giuliano, 2016; Duflo et al., 2011), inaccurate placement has 
consequences: students face misaligned curriculum, and, in higher education, must pay 
tuition for remedial courses that do not bear credits toward graduation. 
 The potential for inaccurate placement is a concern because there is evidence that 
several widely used tests lack validity and unnecessarily reduce educational 
opportunities for students from under-represented groups (Rothstein, 2004; Scott-
Clayton et al., 2014). Given that most placement tests aim to predict students’ 
readiness for college-level courses, using an algorithm with multiple inputs, such as high 
school GPA, to formulate predictions could improve validity (Mullainathan and Spiess, 
2017; Scott-Clayton et al., 2014).3 However, algorithmic screening often raises its own 
concerns about fairness.4 
 In this paper, we develop and evaluate placement algorithms to track students into 
college-level or remedial courses and we implement these algorithms via an experiment 
across seven colleges and 12,526 college students. We recruited community colleges 
across New York and gathered historical data on their students to estimate models 

 
1 Outside the U.S., test scores are frequently used as the sole criterion for admission to colleges (Aguirre 
et al., 2020; Hastings et al., 2013; Kirkeboen et al., 2016; MacLeod et al., 2017; Riehl, 2019). 
2 Community college enrollment has also been significant driver of increases in student borrowing 
(Chakrabarti et al., 2016). 
3 Alternatively, a measure could be constructed to predict treatment effects of specific course placements 
as opposed to pass rates or readiness. In practice, targeting treatment effects does not seem to be how 
colleges try to optimize placement systems, but we explore this assignment goal later in the paper. 
4 For example, this opinion piece in The Washington Post by the director of the American Civil Liberties 
Union’s Racial Justice Program cites the impact of AI in different contexts, including college admissions. 

https://www.washingtonpost.com/opinions/2021/08/09/biden-must-act-get-racism-out-automated-decision-making/
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predicting students’ likelihood of passing college-level math and English courses. These 
predictions incorporated measures such as placement-exam scores, high school GPA, 
high school rank, diploma status, and time since high school graduation. We created 
placement algorithms for math and English that placed students into a remedial course 
if a student’s predicted probability of passing a college-level course was below a cut 
point chosen by each college. We then randomly assigned students to either colleges’ 
test-score placement system—from the most widely-used company in the country—or 
the placement algorithms. 
 The impacts of algorithmic placement systems depend on several factors. Improving 
the validity of the placement instrument could help place students into courses better 
aligned to their incoming skills. Measures such as high school GPA reflect a wider array 
of cognitive and non-cognitive skills than test scores alone (Borghans, et al., 2016; 
Kautz, et al., 2014; Kautz and Zanoni, 2014).5 The algorithms also help colleges choose 
cut points for placements into the college-level courses, which affect the number of 
students placed into these courses and their expected pass rates conditional on 
placement. This choice means algorithmic placement does not necessarily imply that 
placement rates will change either on net or for a given individual. At particular 
thresholds (e.g., the extremes), it is possible that the placements assigned by the 
algorithm and test scores will be the same. But if colleges choose to maintain pass rates, 
the algorithm may place more students into college-level courses, which could increase 
students’ credit accumulation and save students money if the algorithm’s predictions are 
sufficiently accurate. 
 We show how colleges implemented the placement algorithm, how it affected 
students’ placement outcomes, what impacts this had on credit accumulation and costs, 
and its implications for fairness and equity. We find that colleges choose cut points to 
hold pass rates constant. This results in large changes in placement rates: relative to the 
test-score placement system, 23% of math placements change and 55% of English 
placements change. Compared to what would have occurred using the test-score 
placements, the algorithm places 15% more students into a higher-level math class and 
49% more into a higher-level English course. Hence the algorithm places 8% of students 

 
5 GPA also has a high degree of reliability, but there are concerns that grading standards are too school-
specific for it to be useful (Bacon and Bean, 2006). 
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into a lower-level math course and 6% into a lower-level English course.  
 Placement via the algorithm leads to immediate increases in enrollment into college-
level courses. Algorithmic placement yields first-term enrollment increases in college-
level math by 2.6 percentage points and in college-level English by 13.6 percentage 
points relative to the control group. Algorithmic placement also leads to reductions in 
remedial course taking and increases in college credits earned—without reducing pass 
rates. Placement via the algorithm reduces remedial credits attempted by 1.1 credits 
and increased college credits earned by 0.56 credits. For students tracked in both math 
and English the number of college credits earned increases by 1.3 because of algorithmic 
placement.6  
 When the two placement mechanisms disagree on college placement, the algorithm is 
substantially more accurate. We observe counterfactual placements for all students. 
When the algorithm recommends placement into college-level math but the test-score 
system does not, pass rates are 10 percentage points higher than when the test-score 
system recommends placement into college-level math, but the algorithm does not. For 
the analogous disagreement in English, pass rates are 12 percentage points higher. 
 We find evidence algorithmic placement narrows certain demographic gaps in 
placement rates. The algorithm increases placement into college-level courses for all 
subgroups we looked at. After controlling for multiple-hypothesis testing, increases are 
significantly larger for female students in math relative to male students and Black 
students in English relative to white students. Lower-income students have a larger 
reduction of remedial credits relative to higher-income students. However, the increases 
in placement into college-level math, though positive and significant, are not as large for 
Hispanic students compared to white students. 
 In terms of equity, colleges were concerned algorithmic placement would 
differentially affect pass rates across subgroups relative to the status quo. The algorithm 
does not consider any protected characteristics. However, algorithmic placement could 
reduce or improve pass rates for some groups and not others relative to test-score 
placement. Looking across multiple subgroups, we find that pass rates in college-level 

 
6 Each college has a small number of automatic exemptions from taking a placement exam for a given 
subject, and, because our placement mechanism was integrated within the testing platforms, not all 
students could be placed by the algorithm for both math and English. 
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courses remain extremely similar to pass rates in the test-score placement system. Thus, 
placement rates and credit accumulation improve across subgroups without reducing 
pass rates.  
 Several of our contributions derive from the experiment. First, the experiment could 
expose the challenges of estimating algorithms from historical data. Relying on historical 
data and placement records for estimation requires overcoming the “selective labels 
problem” (Kleinberg et al., 2018; Lakkaraju et al., 2017). Selection into college-level 
courses is based on observables, but the historical data can only show pass rates 
conditional on placement into the college-level courses. The algorithm will recommend 
placement into the college-level for some students who never would have been placed as 
such before. At best, such recommendations rely on extrapolations that may be 
inaccurate. Another challenge is that colleges require rapid placement results and 
integration into their existing systems. This speed requirement limits the complexity of 
the algorithms we could implement. Experimental evaluation of algorithmic placement 
is therefore critical for testing how well it performs in practice. 
 Second, the experiment provides variation in placement rates that help us overcome 
the selective labels problem. It is unusual to be able to observe performance in the 
college-level course for a random sample of nearly all students. This variation allows us 
to assess the disparate impact, or unwarranted disparities (Arnold et al., 2022; Baron et 
al., 2024a; Baron et al., 2024b), of each placement system, and to test how selective 
labels can bias the estimation of predictive algorithms in higher education. Holding 
constant a student’s performance in the college course—what each system aims to 
assess—we find the test-score placement system discriminates significantly against 
several under-represented groups, and far more so than the algorithmic system. We 
further show that the selective labels problem nearly doubles the prediction error for 
college English performance but has almost no effect on the prediction error for college 
math performance.  
 Third, the experiment allows us to provide evidence on whether an algorithm that 
places students according to who benefits most from college or remedial courses would 
place students differently. To do so, we use causal forests (Wager and Athey, 2018) 
combined with random assignment and variation in placement rates to show that few 
students benefit from remediation in either math (10%) or English (6%). An algorithm 
placing students according to who benefits most from either the remedial or college 
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course in each subject would therefore place even more students into college-level 
courses. While many colleges have moved to co-requisites (Ryu et al., 2022), which 
allow students to take the remedial course and college-level course simultaneously, our 
findings suggest that movements to substantially redesign remediation coursework (cf. 
Schudde and Keisler, 2019) have more potential benefits than the status quo and reduce 
the opportunity costs of co-requisite requirements. 
 Lastly, the algorithmic placement system also results in cost savings for students. 
We conducted a detailed cost analysis for colleges and students, separating fixed and 
variable costs, and costs to students versus costs to colleges. We find that students 
saved $150, on average, relative to the test-score placement system, which is due to 
reductions in remedial course taking. This implies an average saving to students equal 
to $145,200 per cohort, per college in our sample. 
 For colleges to implement such a placement algorithm, decision makers must weigh 
the potential benefits to students against the costs to the colleges. We estimate that the 
cost per student in the initial year of the study—above and beyond the test-score 
placement system—is $140. Much of these costs are driven by the need to hand enter 
data from high school transcripts. Simple process enhancements, such as requesting 
GPAs on applications, or data-transfer relationships with high schools, could simply and 
greatly reduce the cost of this data collection. The first year of implementation also 
involves large, fixed costs. We estimate operating costs of the placement algorithm are 
$40 dollars per student. The implementation costs are more than offset by the savings 
to the government from reduced credit taking, yielding an infinite Marginal Value of 
Public Funds (Hendren and Sprung-Keyser, 2020). 
 Our paper relates to research arguing that data-driven algorithms can improve 
human decision making and reduce biases—and at low cost (Arnold et al., 2021; Arnold 
et al., 2022; Li et al., 2020; Ludwig et al., 2024; Mullainathan and Spiess, 2017). 
Kleinberg et al. (2018) show that a machine-learning algorithm has the potential to 
reduce bias in bail decisions relative to judges’ decisions alone. At the same time, others 
are concerned that these algorithms could embed biases into decision making and 
exacerbate inequalities (Eubanks, 2018). We contribute to this literature by comparing 
the impacts of a simple, data-driven algorithm to another quantitative measure, test 
scores. We then evaluate the algorithm by conducting a large-scale experiment. 
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 Our paper also relates to a broader literature on tracking students. Historically, 
tracking is controversial. Oakes (1985) argues that the evidence on tracking is 
inconsistent, and, in practice, higher-track classes tend to have higher-quality classroom 
experiences than lower-track classes. More recently, Duflo et al. (2011) randomize 
students in Kenya to schools that either tracked students by test scores or assigned 
students randomly to classrooms. They find that test scores in schools with tracking 
improved relative to the control group both for students placed in the higher-scoring 
and the lower-scoring tracks. Card and Giuliano (2016) study a district policy in which 
students are placed into classrooms based on their test scores. This program caused 
large increases in the test scores of Black and Hispanic students.  
 Multiple studies look at the effects of being placed into a higher track versus a lower 
track. Bui et al., (2014) and Card and Giuliano (2014) find that gifted students’ 
placement into advanced coursework does not change test scores. Cohodes (2020) and 
Chan (2020), however, find increases in enrollment in advanced high-school coursework 
and college. 7  In higher education, there is evidence of negative effects on course 
completion and graduation for marginally admitted students in high-ability classes (de 
Roux and Riehl, 2022). On the other hand, the evidence that placement into remedial 
courses improves academic outcomes for marginal students is more mixed, and several 
regression-discontinuity analyses find no effects (Allen and Dadgar, 2012; Bettinger and 
Long, 2009; Boatman and Long, 2010; Calcagno and Long, 2008; Hodara, 2012; 
Martorell and McFarlin, 2011; Scott-Clayton and Rodriguez, 2015). 
 The rest of our paper proceeds as follows. Section 2 provides further background 
information about tracking in postsecondary institutions and study implementation. 
Section 3 describes the experimental design, data and empirical strategies. Section 4 
presents our main findings. Section 5 investigates measures of equity, fairness, and the 
implications of the selective labels problem for predicting course outcomes. Section 6 
provides a detailed cost analysis, and Section 7 concludes. 
 

 
7 Several other studies look at the effects of placing into high-test score schools and the results are much 
more mixed (Jackson, 2010; Pop-Eleches and Urquiola, 2013; Abdulkadiroğlu et al., 2014; Dobbie and 
Fryer, 2014). 
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2. Background, Site Recruitment, Algorithm Implementation 

Tracking students into remedial education is a major component of higher education 
systems, both in terms of enrollment and cost. In the 2011-12 academic year, 41% of 
first and second-year students at four-year U.S. institutions had taken a remedial 
course, while at two-year institutions, even more—68% of students—had taken a 
remedial course (Chen, 2016). The cost of remedial education has been estimated to be 
as much as $2.9 billion annually (Strong American Schools, 2008). 
 The primary purpose of remedial education is to provide differentiated instruction to 
under-prepared students so they have the skills to succeed in college-level coursework 
(Bettinger and Long, 2009). However, there is evidence that community-colleges’ 
tracking systems frequently “under place” students—tracking them into remedial 
courses when they could have succeeded in college-level courses—and “over place” 
students—tracking them into college-level courses when they were unlikely to be 
successful (Belfield and Crosta, 2012; Scott-Clayton, 2012). 
 Most institutions administer a multiple-choice test in mathematics, reading, and 
writing to determine whether incoming students should be placed into remedial or 
college-level courses. The ACCUPLACER, a computer-adaptive test offered by the 
College Board, is the most widely-used college placement system in the U.S. (Barnett 
and Reddy, 2017). Colleges choose a cut score for each test and place students scoring 
above this score into college-level courses and students below the cut score into various 
remedial courses.8 Given the placement rules and immediate test results provided by the 
ACCUPLACER platform, students often learn their placement immediately after 
completing their exam.  

Site Selection and Descriptions 
All the participating colleges are part of the State University of New York (SUNY) 
system, ranging from large to small, and students’ backgrounds vary from college to 
college. Table A.1 of the Appendix provides each colleges name and an overview of their 
characteristics using public data. The smallest of the colleges serves roughly 5,500 

 
8 Certain colleges may offer exemptions from testing. For instance, this can occur for students who speak 
English as a second language or who have high SAT scores. 
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students while the largest serves over 22,000 students. As is common in community 
college settings, a large share of the student body is part-time and many are adult 
learners, with between 21% and 30% of students over the age of 25. For most of the 
colleges, the majority of students receive financial aid. The colleges have similar 
transfer-out rates of between 18% and 22% and three-year graduation rates are between 
15% and 29%. The colleges also tend to serve local student populations. Lastly, all of 
the colleges have an open-door admissions policy. This means that the colleges do not 
have admission requirements beyond having graduated from high school or earned a 
GED. 

Creating the Placement Algorithm 
Colleges preferred that we develop college-specific algorithms. We created separate 
algorithms for each college in math and English using data on each college’s previous 
cohorts of students. 
 Five colleges in the study had been using ACCUPLACER for several years. One 
college had been using ACCUPLACER assessments for English but had transitioned 
from a home-grown math assessment to the ACCUPLACER math assessments too 
recently to generate historical data, so we tested an algorithm for English placement 
only at that college. One college in our sample had been using the COMPASS exam, 
which was discontinued by ACT shortly after this study began. The college replaced the 
COMPASS exam with the ACCUPLACER exam. At this college, we tested an 
algorithm that did not use any placement test scores against a placement system that 
incorporates only ACCUPLACER test results. 
 We worked with administrators at each college to obtain the data needed to 
estimate each algorithm. In some cases, these measures were stored in college databases. 
In other instances, colleges maintained records of high school transcripts as digital 
images. For the latter, we had the data entered into databases by hand.  
 To estimate the relationships between predictors in the dataset and performance in 
initial college-level courses, we restricted the historical data to students who took 
placement tests and who enrolled in a college-level course without first taking a 
remedial course. This set of students constituted our estimation sample for developing 
the algorithm. Importantly, students were selected into college-level courses based on 
observable characteristics, but this sampling scheme does raise concerns about whether 
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the relationships we estimate between variables will apply to all students. The 
experiment tests whether the assumptions necessary for the practical application of this 
estimation are sufficiently satisfied in this context. 
 We aimed to predict “success” in the college course for each student. We met with 
college personnel to decide how to define success, who agreed to define success as a 
grade of C or better in the initial college-level course associated with the placement 
decision. We then regressed an indicator for success in the relevant course on various 
sets of predictors using Probit and linear probability models (LPM). We used the results 
of the LPMs because we could not code non-linear models into colleges’ existing 
placement software, which had the advantage of producing placement decisions 
immediately following placement exam completion. The software placed significant 
constraints on what we could implement because it could largely only incorporate basic, 
Boolean operators. Nonetheless, the non-linear models yielded similar placement 
decisions as LPMs around the relevant cut points that colleges chose to determine 
placements. 
 For each college, we estimated regressions relating placement test scores, high school 
GPA and other predictors to “success” in initial college-level classes for a given subject: 

[1]  𝟏[C or Better]𝑖 = α0 + α1(HS GPA𝑖) + α2(ACCUPLACER𝑖) + 𝐗𝑖𝑐
′ 𝛂3 + ϵ𝑖. 

We added additional covariates from high school transcripts when such information was 
available. This information included the number of years that have passed since high 
school completion and whether the diploma was a standard high school diploma or a 
GED (diploma status). We also tested the benefit of including additional variables such 
as SAT scores, ACT scores, high school rank, indicators for high school attended, and 
scores on the New York Regents exams, when they were available as well as interaction 
terms and higher-order terms for variables. When variables were missing, we imputed a 
value and added indicators for missing. Identical procedures were followed for both 
English and math. We estimated the models on prior years of historical data excluding 
the most recent year, and then examined fit criteria using data from that most recent 
year.9 

 
9 The focus of this analysis was the overall predictive power of the model. As such, we calculated the 
Akaike Information Criterion (AIC) statistics for each model (varying variables in 𝐗𝑖𝑐). The AIC is a 
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 Conditional on placement into the college-level course, exam scores explain very 
little variation in English course outcomes but more variation in math outcomes; 
including additional measures adds explanatory power.10 Appendix Tables A.2 and A.3 
list the full set of variables used by each college to calculate students’ math and English 
algorithm scores, respectively. Tables A.4 and A.5 show typical examples of our 
regression results for math and English. Across colleges, explanatory power is much 
higher for math course grades than for English course grades. Placement scores typically 
explain less than 1% of the variation in passing grades for English. Test scores are 
better predictors for passing math grades, explaining roughly 10% of the variation. This 
pattern is likely due to the consistency in content between coursework across colleges in 
math and math tests. ELA college courses may exhibit more heterogeneity across 
colleges. Prior research has also shown that math exams tend to create stronger 
incentives for test prep (Riehl, 2019; Riehl and Welch, 2022). Adding high school grades 
typically explains an additional 10% of the variation in both subjects. We find that 
indicators for which high school a student attended, which could reflect different 
grading standards, add little predictive value. Overall, combining multiple measures 
with predictive analytics is no panacea for predicting future grades, but it does improve 
the validity of the placement instrument relative to test scores alone.  

Setting Cut Probabilities 
After we selected the final models, we used the coefficients from the regression to 
simulate placement rates for each college using their historical data. Consider the 
following simplified example where a placement test score (R) and high school GPA (G) 
are used to predict success in college-level math (Y), defined as earning a grade of C or 
better. The regression coefficients combined with data on R and G can then predict the 
probability of earning a C or better in college-level math for incoming students (Ŷ). A 

 
penalized-model-fit criterion that combines a model’s log-likelihood with the number of parameters 
included in a model (Akaike, 1998; Burnham and Anderson, 2002; Hastie et al., 2009; Mazerolle, 2004). 
Under certain conditions, choosing model specifications according to the AIC is asymptotically equivalent 
to leave-one-out-cross-validation (Stone, 1977). In practice, we did not have many variables to select from 
and higher-order and interaction terms had little effect on prediction criteria (and additional complexity 
was difficult to implement). 
10 For context, pass rates average around 55% in math and 61% in English. Note the unconditional-on-
placement explained variation differs from what we show in the appendix table, but are not dissimilar. 
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set of decision rules must then be determined based on these predicted probabilities. A 
hypothetical decision rule would be: 

Placement𝑖 = {College Level if Ŷ𝑖 ≥ 0.6
Remedial if Ŷ𝑖 < 0.6

 

 For each college, we generated spreadsheets projecting the share of students that 
would place into college-level coursework at any given cut-point as well as the share of 
those students we would anticipate earning a C or better. These spreadsheets were 
provided to colleges so that faculty in the pertinent departments could set cut-points for 
students entering their programs.  
 Table 1 shows an abbreviated, hypothetical example of one such spreadsheet 
provided to colleges.11 The top panel shows math placement statistics and the bottom 
panel shows statistics for English. The highlighted row shows the status quo at the 
college and the percent of tested students placed into college level is shown in the 
second column. For instance, for math, the status quo placement rate in a college-level 
course is 30%. The third column shows the pass or success rate, which is a grade “C” or 
better in the first college-level course in the relevant subject. In this example, the 
status-quo pass rate for math is 50% conditional on placement into the college-level 
math course. 
 Below the highlighted row, we show what would happen to placement and pass rates 
at different cut points for placement. The first column shows these cut points 
(“Minimum probability of success”). For instance, for math, the first cut point we show 
is 45%, which implies that for a student to be placed into college-level math under the 
algorithm, the student must have a predicted probability of receiving a “C” or better in 
the gate-keeper math course of at least 45%. If this 45% cut point is used, columns two 
and three show what would happen to the share of students placed into college-level 
math under the algorithm (column two) and what would happen to the share who 
would pass this course conditional on placement (column three). In this example, for 
math, if the 45% cut point is used, the algorithm would place 40% of students into 
college-level math and we anticipate 60% of those students would pass. The cut point 
differs from the expected pass rate because the cut point is the lowest probability of 

 
11 In practice, we showed results from many different cut points. 
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passing for a given student: the cut point implies that every student must have that 
probability of passing or greater. For instance, if the cut point is 40%, then every 
student has 40% chance or greater of passing the college-level course. Therefore, most 
students placed into college-level courses according to this rule will have above a 40% 
chance of passing the course.  
 Faculty opted to create placement rules that kept pass rates in college-level courses 
the same as historical pass rates. In general, this choice implied increases in the 
predicted number of students placed into college-level coursework. For instance, in the 
example, the status quo placement and pass rates for English are 40% and 60%, 
respectively. A cut point of 45% would induce the same pass rate, 60%, but would place 
75% of students into the college-level English course. 

Installation of New Placement Method in College Systems 
We developed two procedures to implement the algorithms while maintaining the timing 
of placement decisions. At colleges running our algorithm through the computerized 
ACCUPLACER-test platform, we programmed custom rules into the ACCUPLACER 
platform for students selected to be part of the treatment group.12 These rules created 
the weights on various student characteristics that, when combined with the colleges’ 
thresholds for placement, produced a placement recommendation for a student. 
 Other colleges ran their placement through a custom server built for the study. 
Student information was sent to servers to generate the probability of success and the 
corresponding placement, which was returned to the college. 

3. Experimental Design, Data, Empirical Strategy 

The sample frame consisted of entering cohorts (fall and spring) enrolling at each college 
who were required to take the placement exams from 2016 until 2018. 13  Random 
assignment was at the student level and stratified by college. We integrated the 

 
12 As mentioned above, this process placed constraints on the algorithm’s complexity. Interaction terms 
and non-linear models, for instance, were difficult to implement within the ACCUPLACER system. 
13 Colleges preferred to use alternative placement processes for English as a Second Language speakers, 
and students with high SAT scores or 4.0 GPA were sometimes exempt from placement exams. Note that, 
as these are non-selective colleges, few students take the SAT. We report exemption rates in Table 4.  
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assignment procedure into each college’s placement platform as described above, such 
that, upon taking their placement exams, students were randomly assigned to be placed 
using either the test-score placement system or the algorithmic system. Students and 
their instructors were blinded to their treatment assignment. If a student took both the 
English and math placement exams, they were either assigned to the test-score 
placement system for both subjects or the algorithmic placement system for both 
subjects. Some students only took a placement exam in one subject. After taking 
placement exams, students were notified of their placements either by an administrator 
or through an online portal, depending on the college.  
 This experimental design resulted in a well-powered study, given the constraints. We 
interviewed faculty and staff to document any perceived changes they saw in the 
composition of classrooms and any responses to these changes. As we describe below, 
faculty did not perceive changes to their classroom compositions and so did not make 
changes to the curriculum or teaching. Given that prior evidence suggests that tracking 
can allow instructors to target instruction more effectively (cf. Card and Giuliano, 2016 
and Duflo et al., 2011), our results may present a lower bound on effectiveness if 
instructors were to change their behaviors in response to more significant changes in 
their classroom compositions. 

Data 
Data came from three sources: placement test records, administrative data from each 
college, and qualitative data on implementation and quantitative data on costs was 
collected from faculty, counselors, and staff using interviews and focus groups. Student-
level placement test records include indicators for each students’ placement level in 
math and English, as well as the information that would be needed to determine 
students’ placements regardless of treatment status. Therefore, we observe the 
algorithmic and the test-score placement results for every student in our sample, 
irrespective of whether they were assigned to the treatment or control group. Placement 
test records from each college contained high school grade point averages (when 
available) and scores on individual placement tests. Additional variables included in 
placement test records varied by each college’s placement algorithm. Examples of 
additional variables incorporated for certain colleges include the number of years 
between high school completion and college enrollment, type of diploma (high school 
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diploma vs. GED), SAT scores, and New York State Regents Exam scores. In addition 
to placement test records, college administrative data included demographic 
information, such as gender, race, age, financial aid status, and transcript data that 
provided course levels, credits attempted and earned, and course grades.  
 Table 2 shows sample baseline characteristics for students who participated in the 
study at each college and overall. Our sample consists of 12,526 first-year students 
across the seven colleges. There is some variation in demographic characteristics. For 
instance, Colleges 1, 2, and 3 serve more white students compared to Colleges 5 and 7, 
which enroll a higher share of Hispanic students. Using Pell Grant receipt as a proxy for 
income, average family income for study participants also varies across colleges; Pell 
Grant receipt ranges from 32% to 56% of students. Comparing these characteristics to 
Appendix Table A.3 shows that the study sample characteristics match the overall 
characteristics of students each college serves. 

Outcomes 
We study the effects of assignment to the placement algorithm on several primary 
outcomes, by subject. First, we examine how placements change as a result of the 
algorithm: what share of treated students had their placement change relative to the 
status quo, and of these, what share had their placement change from a remedial-course 
assignment to a college-level assignment, and what share had their placement change 
from a college-level course assignment to a remedial assignment. Second, we show 
treatment effects on enrollment and pass rates for math and English separately. Lastly, 
we study college and remedial credits attempted and completed. We show these results 
in the short run—the first term after placement—as well the longer run for subsample of 
students we observe for more than two years. 

Empirical Strategy 
We use an intent-to-treat analysis to examine the impacts of using algorithmic 
placement versus the test-score placement system. We estimate the following model: 

[2]    Y𝑖𝑐 = β0 + β1Treatment𝑖𝑐 + 𝐗𝑖𝑐
′ 𝛃2 + γ𝑐 + ε𝑖𝑐, 

where Y𝑖𝑐 are academic outcomes for student i in college c, such as placement into a 
college-level course and passing a college-level course; Treatment𝑖𝑐 indicates whether the 
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individual was randomly assigned to be placed using the algorithmic placement system 
or the test-score placement system; γ𝑐 are college (strata) fixed-effects; 𝐗𝑖𝑐 is a vector of 
baseline covariates (gender, race, age, financial aid status), including students’ math and 
English algorithm scores, which are baseline measures of academic preparedness, and ε𝑖𝑐 
is the error term. The coefficient of interest is β1, which is the effect of assignment to 
the placement algorithm on outcomes discussed above. We estimate Huber-White-
Heteroskedasticity robust standard errors following the experimental design (Abadie et 
al., 2020; Huber, 1967; White, 1980).  
 As not everyone takes a placement exam in both subjects, we estimate these 
regressions for those who took any placement exam (which cannot be affected by 
algorithmic assignment), and therefore are assigned to placement by the algorithm for 
one or two courses. We also estimate these regressions for those who took placement 
exams in both subjects and therefore can be assigned to placement by the algorithm for 
two subjects. 

Subgroup Analyses 
We also study several differential effects of the placement algorithm has on the 
composition of students placed into remedial and college-level courses. We estimate 
equation [2] above for each subgroup and test the significance of the interaction terms, 
shown below. 

[3]  Y𝑖𝑐 = β0𝑘 + β1𝑘Treatment𝑖𝑐 + β2𝑘Treatment𝑖𝑐 × Subgroup𝑘 + γ𝑐 + 𝐗𝑖𝑐
′ 𝛃3𝑘 + ζ𝑖𝑐. 

 The outcomes, Y𝑖𝑐, are placement in college-level math, placement in college-level 
English, and credit accumulation. For each k subgroup of interest, we restrict the 
sample to the reference group and the subgroup. Therefore, the coefficient β1𝑘 shows the 
effect for the reference group (listed below), and the coefficient of particular interest is 
the significance and magnitude of β2𝑘, which indicates whether the difference between 
groups of students is widening or narrowing because of algorithmic placement. The 
subgroups of interest are Black students and Hispanic students compared to White 
students; female students compared to male students; and Pell recipients compared to 
non-Pell recipients. This process yields many tests, which increases the likelihood of 
type-I errors. To control for the Family Wise Error Rate we use a simple step-down 
procedure formulated by Holm (1979). 
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Treatment-Control Baseline Balance 
Randomization should ensure that, in expectation, students assigned to the treatment 
group are similar to those assigned to the control group. Table 3 provides evidence that 
random assignment was successfully implemented. Participants’ demographic and 
academic characteristics are balanced across treatment and control groups. Students’ 
ACCUPLACER exam scores also are similar across both groups. Overall, the 
magnitudes of differences between treatment and control groups are small and only one 
is significant at the 5 percent level, which is unsurprising given the more than 20 
variables tested. Though not shown, this balance also holds for the subgroup of students 
who took both the English and math placement exams as well.  

4. Results 

Descriptive Changes in Placements 
We begin with a descriptive summary of placement changes to show the various ways 
the algorithm changed students’ placements relative to the test-score placement system. 
As stated above, it is not obvious how the algorithm will change net placement rates. 
Table 4 summarizes these changes for students placed by the algorithm. Of the more 
than 6,000 students assigned to the program-group, 82% were tracked in math and 
100% were tracked in English. Among those students who took a math placement exam, 
23% experienced a math placement different from what would have been expected under 
the test-score placement system. Of those with a changed math placement, 67% were 
placed into a higher-level math course than would have been expected under the test-
score placement system, and 33% placed in a lower-level math course. Of those who 
took the English placement exams, approximately 55% of program-group students 
experienced a change in the level of their English level placement, of which 90% placed 
into a higher-level English course and 10% placed into a lower-level course than they 
would have under the test-score placement system.  

Treatment Effects on Placement, Course Taking, and Credits 
Algorithmic placement causes increases in placement into college-level courses, 
enrollment in college-level courses, and total college-level credits earned. Table 5 
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summarizes the first-term results. Students assigned to the placement algorithm are 6.6 
percentage points more likely to be placed into a college-level math course, 2.6 
percentage points more likely to enroll in a college-level math course, and 1.9 percentage 
points more likely to pass a college-level math course during the first term. All of these 
results are statistically significant at the 1 percent level. As described above, one 
explanation for the difference between placement and enrollment into a college-level 
math course is that students placed into college-level math do not have to complete a 
college-level math course prior to enrolling in other college-level courses in the first 
term.  
 There are positive and substantially larger effects for English placement, enrollment, 
and completion than for outcomes on math courses. Students who were placed by the 
algorithm are 32 percentage points more likely to place into a college-level English 
course, 14 percentage points more likely to enroll in a college-level English course, and 7 
percentage points more likely to pass a college-level English course in the first term. All 
results are significant at the 1 percent level. Again, the difference between placement 
and enrollment into a college-level English course may occur for the same reason as 
above for college-level math enrollment. 
 We also find reductions in total remedial credits taken and increases in total college 
credits earned. These effects are generally larger for students who are placed via the 
algorithm in both math and English. The first three columns in Table 5 show results for 
students who took any placement exam while columns four through six show results for 
students who took a placement exam in both subjects (and so are tracked in both 
courses). 
 Table 6 shows algorithmic assignment reduces remedial credits attempted by 1.1 
credits relative to a mean of 3.5 credits—a 31% reduction. The effect is almost the same 
for those tracked in both English and math, but, relative to a mean of 4.1 credits, which 
is a 26% reduction. Table 6 also shows there is an increase in credit accumulation of 
0.56 credits for those tracked in at least one subject and 1.3 credits for those tracked in 
both subjects. At the outset, it was possible students might substitute math and English 
college credits for other college-level credits and not just for remedial credits. However, 
Table A.6 shows the net positive effects on credit accumulation is also due to an 
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increase in other (non-math and non-English) college-level credits and not just a 
substitution between types of credits.14 
 The increase in college-level placement does not result in a reduction in pass rates. 
We can calculate pass rates by dividing credits earned by credits attempted. For 
students who are tracked in at least one subject, the control group passes 64% of their 
college-level credits attempted while the treatment group pass rate is 63%. For those 
students tracked in both subjects, the control group pass rate is 62% and the treatment 
group pass rate is 63%. 
 Another indicator of performance relative to test-score based placement is what 
happens when the two systems disagree on placement into college-level courses. We 
observe counterfactual placements for each student. The first row of Table 7 shows pass 
rates in each subject when the algorithm recommends placement into college level but 
the test-score placement system does not. The second row of Table 7 shows pass rates in 
each subject when the test-score system recommends placement into college level but 
the algorithm does not. The first two columns show pass rates in math and English 
during the first term, and the second two columns show pass rates for students who ever 
enroll in the college-level math and English course. When the systems disagree, pass 
rates are at least 10 percentage points higher for the algorithmic placement system than 
for the test-score based placement system.  
 The overall pattern of results holds over the longer run as well. Table 8 shows 
results for our earliest cohort of students 2.5 years later. It is possible that, after more 
than two years, students in the control catch up to students in the treatment group. 
The control group for this cohort has higher total credit accumulation than the overall 
sample, as expected, but the increase in total credits earned and the decrease in 
remedial education credits earned are each larger than what is observed in the short 
run. The evidence we have suggests that the benefits are consistent (or grow slightly) as 
students progress through community college. 
 

 
14 Pass rates for the non-math and non-English credits are the same (around 65%) as for math and 
English credits. 



20 
 

5. Equity, Fairness, and the Implications of Selective Labels 

Equity 
One measure of equity is how algorithmic placement affected differences in placement 
rates across subgroups. Table 9 shows the subgroup effects on placement outcomes and 
credit accumulation for each subject and subgroup. Each cell is a separate regression 
restricted to the subgroup specified in the column header. The control group mean and 
the observation count for the outcome and subgroup of interest is shown immediately 
below the standard error.  
 The effects of the algorithm on placement into college-level math and English are 
large and positive for all subgroups, except for male students in math. Remedial credits 
earned also decrease for all subgroups (including male students), and college credits 
increase a statistically significant amount only for female students, and Pell-grant 
recipients. 
 College administrators were interested in how the algorithmic placement system 
affected differences in placement rates across subgroups. Given this interest, we focus on 
the extent to which algorithmic placement widened or narrowed differences in key 
outcomes across subgroups. This question implies we are interested in the interaction 
terms from equation [3], which tests whether there are differential effects for Black and 
Hispanic students (separately) relative to White students, female students relative to 
male students, and Pell recipients relative to non-Pell recipients. Including outcomes in 
placement for math and English and credit accumulation in remedial and college-level 
courses, there are 16 interaction terms of interest. We use the step-down method from 
Holm (1979) to (conservatively) control for the Family-wise Error Rate at the five 
percent level. 
 Four interaction terms remain significant after this adjustment. Placement rates for 
Black students into college-level English increase relative to White students and 
placement rates for female students into college-level math relative to male students 
increase as well. Though placement rates into college-level math and English courses 
increase for Hispanic students overall, the increase in math is smaller than it is for 
White students. Lastly, the decrease in remedial credits is significantly larger for Pell 
recipients than it is for non-Pell recipients. Thus, students from all of these groups seem 
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to benefit from algorithmic placement; on average, there is evidence that many of the 
benefits accrue to students traditionally under-represented in college courses. 
  One concern is whether algorithmic placement increases placement rates for certain 
subgroups but reduces pass rates in college courses for those groups. As mentioned, 
relative to the test-score placement system, college-level pass rates remain constant 
overall under the new placement system, but algorithmic placement could have 
differential effects on college-level pass rates across subgroups.  
 To check this, we independently estimate equation [2] for each subgroup on pass 
rates and present the results in separate columns of Table 10. While there seems to be a 
slight reduction in pass rates for White students in English and male students in math 
and English, the few (3 out of 21) statistically significant coefficients become non- 
significant (at the five percent level) after adjusting for multiple testing using the 
Holm’s step-down method. Overall, pass rates in college-level courses are similar across 
subgroups.  

Assessing Disparate Impact 
While the algorithm does not include any group membership indicator (i.e., there is no 
disparate treatment), a placement score may discriminate by causing disparate impact 
or unwarranted disparities. In the context of course placement, this criterion means that 
a score—a test score or an algorithm score—discriminates if people from two different 
demographic groups have different expected placements conditional on their likelihood 
of passing the college-level course. Following the notation of Arnold et al. (2021), a 
score results in disparate impact if: 
 
[4]   Δ = (𝐸[𝑃𝑖|𝑌𝑖

∗ = 0, 𝑅𝑖 = 𝑎] − 𝐸[𝑃𝑖|𝑌𝑖
∗ = 0, 𝑅𝑖 = 𝑏])(1 − 𝜇) 

+(𝐸[𝑃𝑖|𝑌𝑖
∗ = 1, 𝑅𝑖 = 𝑎] − 𝐸[𝑃𝑖|𝑌𝑖

∗ = 1, 𝑅𝑖 = 𝑏])𝜇 ≠ 0. 
 
𝑃𝑖 is an individual’s placement, based on either their test score or algorithm score. 𝑌𝑖

∗ 
indicates whether a student would take and pass the class, if directly placed. 𝑅𝑖 
indicates a particular demographic group, and 𝜇 is the average pass rate across students 
in either group. The first term on the righthand side of the equation represents the 
difference in expected placements between groups a and b conditional on students who 
would not pass the course if placed. The second term on the righthand side represents 
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the difference in expected placements between the same groups conditional on students 
who would pass the course. These two differences are weighted by the overall share of 
students who would not pass the course and the overall share of students who would 
pass the course, respectively. A Δ different from zero indicates disparate impact. For 
example, let 𝑃𝑖 be the placement decision under the ACCUPLACER system used to 
place students into college-level math, let demographic group a indicate white students, 
and let demographic group b indicate Black students. If Δ > 0, this implies Black 
students who are equally qualified for the college-level course are nonetheless less likely 
to be placed into the college-level course under the ACCUPLACER system than equally 
qualified white students.  
 The challenge in estimating Δ is that we only observe 𝑌𝑖

∗—whether a student passes 
the college-level course if placed—for a selected set of students. This set is selected 
because placement into the college-level course is conditional on sufficiently high 
placement scores. The experiment helps solve this selection problem because the 
algorithm and test-score placement systems place different sets of students into the 
college-level course, and the experimental design selects a random sample of students 
from each of these groups.  
 For instance, imagine the algorithm selects one set of students and the test score 
system selects the complement of this set. If we only saw one of these systems 
implemented, we would still only observe 𝑌𝑖

∗ for those who meet the placement criterion 
for that system. However, since we implement both systems simultaneously and 
randomly assign students to each system, we observe a random sample of students 
placed by either system. In this example, we would see a random sample of all students 
placed into the college-level course because the two systems select complementary sets 
of students. While the latter solves the selection problem, for most colleges it is not 
true: there remains a large share of students whom neither system would place into the 
college-level course. However, one college in the study comes close to this scenario in 
English and nearly does so in math.  
 We use this college to examine disparate impact in both the ACCUPLACER and 
algorithm placement systems, as well as to understand the selective-labels problem for 
predicting college-course performance. At this college, 99% of all students eligible for 
placement in English (N = 905) would have been placed into college-level English by at 
least one of the placement systems, and 93% of students eligible for placement in math 
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(N = 1,679) would have been placed into college-level math by at least one of the 
placement systems.15 We use students’ observed placements across the two systems to 
estimate Δ as follows: 
 

[5]   Δ̂ = (
∑ 𝑃𝑖𝑎(1−𝑌𝑖𝑎

∗ )𝑁𝑎
𝑛𝑎=1

∑ (1−𝑌𝑖𝑎
∗ ) 𝑁𝑎

𝑛𝑎=1
−

∑ 𝑃𝑖𝑎(1−𝑌𝑖𝑏
∗ )𝑁𝑏

𝑛𝑏=1

∑ (1−𝑌𝑖𝑏
∗  )𝑁𝑏

𝑛𝑏=1
) (1 − 1

𝑁 ∑ 𝑌𝑖
∗ 𝑁 

𝑛 =1 ) +

                         (
∑ 𝑃𝑖𝑎𝑌𝑖𝑎

∗  𝑁𝑎
𝑛𝑎=1

∑ 𝑌𝑖𝑎
∗  𝑁𝑎

𝑛𝑎=1
−

∑ 𝑃𝑖𝑎𝑌𝑖𝑏
∗  𝑁𝑏

𝑛𝑏=1

∑ 𝑌𝑖𝑏
∗  𝑁𝑏

𝑛𝑏=1
) ( 1

𝑁 ∑ 𝑌𝑖
∗ 𝑁 

𝑛 =1 ). 

 
𝑃𝑖𝑎 , 𝑃𝑖𝑏 , 𝑌𝑖𝑎

∗ , and 𝑌𝑖𝑏
∗  are placement decisions (by the algorithm or ACCUPLACER 

systems) and an indicator for passing the course, respectively, conditional on student i 
belonging to demographic group a or b. Lastly, 1

𝑁 ∑ 𝑌𝑖
∗ 𝑁 

𝑛 =1 is an estimate of the pass 

rate if all students were placed into the college-level course. 
 While our design helps address the selective labels problem, we still do not observe 
𝑌𝑖

∗ for all students.16 We impute these missing values for 𝑌𝑖𝑎
∗  and 𝑌𝑖𝑏

∗  considering two 
scenarios: all students with missing values passing the college-level course, or not, 
generating two estimates (an upper and lower bound) of Δ̂ for each system.17 We then 
bootstrap these estimates 1,000 times to obtain standard errors of Δ̂. We estimate Δ 
between different demographic groups for the ACCUPLACER and the algorithm 
systems in math and English. Table 11 shows the resulting estimates and standard 
errors. 
 For the ACCUPLACER math placement system, we find evidence of disparate 
impact across multiple demographic groups. Focusing on the lower bound of each pair of 
estimates, Black students who are equally likely to succeed in college math as White 
students have a 15 percentage point lower probability of being placed into a college-level 

 
15 Note that this does not imply that either 99% of students in English or 93% of students in math were 
placed into the respective college-level course either within or across the two systems.  
16 𝑌!∗ is missing 1% in English and 7% in math. 
17 We could tighten these bounds further by assuming pass rates are weakly higher for students with 
higher test scores or higher algorithm scores. Let 𝑝𝑡, 𝑝𝑎 be the placement decisions by the test score 
system and algorithm system, respectively, which can take on a value of either 1 for college level or 0 for 
remedial. Dropping the conditioning on race, 𝐸[𝑌 ∗] = 𝐸[𝑌𝑖

∗|𝑝𝑡 = 0, 𝑝𝑎 = 0]𝐸[𝑝𝑡 = 0, 𝑝𝑎 = 0] +
𝐸[𝑌𝑖

∗|𝑝𝑡 = 1, 𝑝𝑎 = 0]𝐸[𝑝𝑡 = 1, 𝑝𝑎 = 0] + 𝐸[𝑌𝑖
∗|𝑝𝑡 = 0, 𝑝𝑎 = 1]𝐸[𝑝𝑡 = 0, 𝑝𝑎 = 1] + 𝐸[𝑌𝑖

∗|𝑝𝑡 = 1, 𝑝𝑎 = 1]𝐸[𝑝𝑡 =
1, 𝑝𝑎 = 1]. We do not observe the first term—pass rates for students who had low test and low algorithm 
scores—however, it may be reasonable to assume it is not a higher value than any of the other terms. 
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course (80% of the raw difference in placement rates between the two groups). 18 
Hispanic students have a 14 percentage point lower probability of placement into college 
level math compared to white students whop are equally likely to pass (87% of the 
difference in placement rates between the two groups). Similarly, female students have a 
13 percentage point lower probability of placement into college-level math than male 
students (96% of the difference in placement rates between the two groups). All of these 
results are statistically significant at the 1% level. 
 The math algorithm exhibits smaller bias. For Black students compared to white 
students, the two estimates of Δ̂ are 6.0 and 6.8 percentage points in favor of white 
students (both significant at the 1% level). For Hispanic students compared to white 
students, the estimates are 1.4 and 2.4 percentage points, neither of which is statistically 
significant. Similarly, for female versus male students, the estimates of Δ̂ are 2.0 and 1.9 
percentage points, neither of which is statistically significant. 
 For English ACCUPLACER placement, the results are more variable. For Hispanic 
and Black students compared to white students, Δ̂ is 13 and 21 percentage points, 
respectively, which are substantially lower probabilities of being placed into a college-
level course than white students conditioning on their outcomes in the course (96% and 
99% of the raw differences in placement rates, respectively). Female students, however, 
have a 2.7 percentage-points higher (not statistically significant) probability of being 
placed into a college-level English course than male students. 
 The algorithm for English exhibits similar directional bias for female versus male 
students: Δ̂  is 0.5 percentage points in favor of female students (not statistically 
significant). For Hispanic students compared to white students, there is no difference in 

 
18 For context, Black and Hispanic students have a 22 and 13 percentage point lower probability of being 
placed into an English college-level course by the ACCUPLACER system, respectively. In comparison, 
female students have a 2 percentage point higher probability than male students. In math, Black, 
Hispanic, and Female students have an 18, 16, and 13 percentage point lower probability, respectively, of 
being placed into college-level by the ACCUPLACER system. Differences in algorithm scores are much 
smaller across groups: Black and Hispanic students have the same probability than white students to be 
placed in an English college-level course, and an 8 and 2 percentage point lower probability of being 
placed into a math college-level course (the last is not statistically significant). Female students have a 
0.4 percentage point higher probability (non-significant) than male students on the likelihood of being 
placed into an English college-level course, and 3 percentage point lower probability of being placed into a 
math college-level course. 
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the likelihood of being placed into a college-level English course. For Black students 
compared to white students, Δ̂ is 0.5 percentage points in favor of white students (not 
statistically significant). 
 Though the results above assess a measure of discrimination across the placement 
systems, the extent to which they exhibit any bias is still within the context of each 
college’s particular placement system and its associated rules and practices. For 
instance, colleges may change the set of tests taken by providing exemptions from 
taking the placement tests due to prior credits earned in high school, high SAT scores, 
or high New York Regents test scores. Colleges may offer formal or informal test 
preparation guidance to students as well. While these policies tend to be similar across 
the colleges in our sample, their similarity (or not) to colleges outside the context of our 
study could limit the external validity of our results. 

The Implications of Selective Labels for Predicting Course Outcomes 
The selective labels problem poses a challenge for estimating algorithms and accurately 
forecasting their potential impact in lieu of an experiment. We also use the college 
above to examine how the selective labels problem affects our ability to predict success 
in the college-level courses. To do so, we regress an indicator for passing the college-level 
course on baseline covariates. The college’s placements across both systems, combined 
with random assignment, allow us to add an important interaction term: an indicator 
for whether a student would have been placed into college-level by the test-score 
system. The latter group of students—those placed into the college-level course—is the 
group typically used for estimating a model predicting course outcomes (cf. Scott-
Clayton, 2012 and Scott-Clayton et al., 2014). Without the experiment, these students 
would be the only ones for whom we observe the relevant outcome because they were 
placed into the college level course.  
 Specifically, we estimate the following model that compares coefficients from the 
“selected model,” which conditions on placement into the college level by test-score 
system, with those who are not placed into college level: 

[6]    Y𝑖 = γ0 + 𝐗𝑖
′𝛄𝟏 + selected𝑖γ2 + selected𝑖 ∗ 𝐗𝑖

′𝛉 + ω𝑖, 

 Y𝑖  is an indicator for passing the college-level course, 𝐗𝑖
  is a vector of baseline 

covariates, such as high school GPA and diploma type, and 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑖 is an indicator for 
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whether the test-score placement system would have placed student i into the college-
level course. The coefficients of interest are represented by the vector 𝛉, which show 
whether predictors are weighted differently among those placed into college level by the 
test score system versus those not placed into college level. One test of whether the 
selective labels problem “matters” is reflected in the significance of these interaction 
terms. Significant differences could imply that the selected model, which conditions on 
placement into the college level, will make different predictions than an unselected 
model that does not condition on placement. Table 12 shows the resulting coefficients 
and standard errors from estimating [6] for predicting success in college-level English 
and math. 
 Several interaction terms are statistically significant. For college English, 
ACCUPLACER scores and high school GPA have smaller coefficients in the selected 
model. We fit a Seemingly Unrelated Regression model to conduct a joint test of 
whether the coefficients estimated using the unselected sample—not conditioned on 
placement—are equal to the coefficients estimated using the selected sample. We reject 
this hypothesis at the 1% level. For college math, GED status is significantly larger in 
the selected sample. A joint test for the equality of coefficient estimates across the two 
models for math rejects this hypothesis at the 10% level. 
 We also use these model estimates to generate predictions of success in college 
English and math for each student. For English, the predicted probabilities generated 
from the unselected model are only weakly correlated with those generated from the 
selected model; the correlation is 0.22. The correlation of the predicted probabilities for 
math are much higher, however: 0.94. 
 What implications do these differences have for prediction errors? To answer this 
question, we randomly sort the data and partition it into five “folds.” We then fit each 
model on four of the folds and compute the Mean Squared Error (MSE) on the 
remaining fold (the “hold-out” or “test” sample). We repeat this process by holding out 
each of the five folds and then computing the MSE each time on the test sample. We 
average the MSE across the five folds to compute the out-of-sample Mean Squared 
Error (OOSMSE) for the selected and unselected models in each subject. 
 In English, the OOSMSE is nearly twice as high for the selected model (the model 
estimated on the sample that conditions on placement into the college level course via 
the test-score system) as the unselected model. The OOSMSEs for each model are 0.39 



27 
 

and 0.23, respectively. In math however, the OOSMSEs are nearly identical across the 
two models: 0.23 for the selected model versus 0.22 for the unselected model. Overall, 
the evidence suggests that the selective labels problem is more consequential for 
predicting college English outcomes than predicting college math outcomes. 

An Algorithm that Places Students According to Predicted Benefits 
Often, algorithms in education identify students based on their predicted outcomes. In 
contrast, the experiment allows us to estimate an alternative algorithm based on 
predicted benefits of an intervention. How would placements differ if we placed students 
based on whether they are predicted to benefit from remedial coursework or college-level 
coursework? The experiment creates a subset of students whose placement was 
effectively randomized; because we know what someone’s placement would be under 
each system, irrespective of their realized assignment, we can subset to the students 
whose placement would be the college-level course under one system and the remedial 
course under the other system. 2,913 students had their placement randomized in math 
and 6,829 students had their placement randomized in English. 
 We use this subset of students and a generalized random forest approach (Athey et 
al., 2019) to estimate the conditional average treatment effects (CATE) on total credit 
accumulation, and predict which students benefit most from remedial course placement 
(or, symmetrically, college-level placement) in each subject. We then simulate an 
algorithm that places students according to which course they benefit from most. 
 Tables 13 and 14 show that few students benefit from remedial coursework. If 
students were placed according to an algorithm that assigns students according to which 
course they benefit from most, even more students would be placed into college-level 
coursework: 90% would be placed into college-level math and 94% would be placed into 
college-level English. 63% of students would have their placements changed in math and 
21% in English relative to an algorithm that places students based on their likelihood of 
passing the college-level course. That so few students benefit from remedial coursework 
also suggests that policies that aim to reduce the opportunity cost of remedial 
coursework by allowing students to take that course at the same time as the college-
level course may nonetheless be harming many students (Ryu et al., 2022). Instead, it 
would be more constructive to redesign remedial coursework to be more effective 
(Schudde and Keisler, 2019). 
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6. Cost Analysis 

In this section, we present the cost-effectiveness analysis for the algorithmic placement 
system and the test-score placement systems for six colleges using the ingredients 
method (Levin et al., 2017). We could not collect complete cost data at one college.19 
The cost estimates reflect the annual expected cost during the first five years of 
implementing and operating the new placement system at college of similar size and 
organization as the six sample colleges. 
 Algorithmic placement resulted in cost savings for students: students earned more 
college credits and took fewer remedial credits with a net effect of lower tuition 
payments. Relative to the test-score placement system, implementation and operation 
costs were larger for colleges, $140 per student; operating costs, however, are $40 per 
student over the status quo. Overall, algorithmic placement is more cost-efficient from a 
social perspective than the existing placement systems. That is, while the 
implementation and operating costs are larger for colleges, the cost reduction for 
students more than offsets the increased cost to colleges, so total costs are lower for the 
algorithmic placement system. Following Hendren and Sprung-Keyser (2020), we 
conduct a comparative welfare analysis by estimating the Marginal Value of Public 
Funds (MVPF): students’ willingness to pay for algorithmic placement divided by the 
costs to the government. The latter is negative and the former positive, resulting in an 
infinite MVPF. 
 Costs could be reduced substantially if data to estimate the algorithms did not have 
to be hand entered and if data collection were centralized into a single system. We 
detail the calculations underpinning these findings below. 

Defining Costs and Cost Data 
To better understand the details of our cost-effectiveness analysis, we start by defining 
several terms. First, fixed costs are those costs that do not vary with college enrollment. 
Direct costs are the costs of implementing and operating the placement system. 
Implementation costs include one-time costs incurred to develop and test the placement 

 
19 What we could collect does not suggest this seventh college had costs significantly different from the 
others, but personnel changes prevented us from collecting all the necessary data. 
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method (e.g., evaluator time) and the operating costs to keep it fully functional. 
Operating costs refer to running a placement system after the initial method has been 
developed and tested (i.e., personnel, facilities, administering placement test, etc.). 
Indirect costs are associated with the price and quantity of credits attempted by the 
students. The total costs are the sum of the indirect and direct costs. Student costs 
include only the cost of the credits attempted and not the direct costs, as students do 
not pay for the additional costs of implementing the algorithmic placement system. In 
contrast, college costs include direct costs of implementing the alternative system and 
any costs from course offerings (e.g., changes in the number of remedial courses offered). 
Finally, cost-efficiency, in our context, compares the costs of the algorithmic placement 
system to the test-score placement system (Levin et al., 2017). 
 We collected data on ingredients from two primary sources. One source for this 
information was from direct interviews with faculty and staff who implemented the new 
testing protocols. The second source for input prices and overhead costs was from 
secondary sources, such as the Integrated Postsecondary Education Data System 
(IPEDS), described below. 

Sources of Costs in the Placement Systems 
Understanding the different cost components of the placement systems helps to 
distinguish fixed costs from operating costs. The initial investment to implement the 
algorithm has three components. First, data on students’ characteristics (including high 
school transcripts), placements based on test results, and subsequent college outcomes 
must be collected. In some colleges, these data are already available, but other colleges 
required more extensive data collection. Second, data must be analyzed to estimate the 
new placement algorithm. Third, resources must be allocated to create and implement 
the new system within the college, which includes training personnel. After the initial 
investment, implementation requires collecting data from entering students and 
personnel to assign students to either remedial or college-level courses. For the 
algorithm, one driver of costs was data entry. Data entry costs were lower if the college 
had all high school information pre-loaded into their databases. In contrast, data entry 
costs were higher if each student’s information had to be entered into the computing 
system individually. 
 For both placement systems there are costs for administering placement tests. Also, 
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for both systems, future resources may be required as students progress into college-level 
courses after completing remedial coursework. If more students progress into college-
level courses, colleges may have to shift resources toward college courses and away from 
remedial courses in conjunction with any changes in revenue per student.  
 College faculty, counselors, and administrators did not indicate significant resource 
changes with respect to instruction. Potentially, the new placement system may change 
assignments such that more students are now in college-level classes, which would 
require more college-level faculty and more sections of college-level courses. However, 
colleges indicated that faculty could be reassigned from teaching remedial classes to 
teaching college-level classes, and few changes in class size were anticipated even given 
the changes in placement rates. 
 Along with the direct implementation and operational costs, there were also indirect 
costs associated to the different total number of credits attempted by students under 
the algorithmic placement system. To compute the indirect costs, we used IPEDS 
information on the six colleges considered in this analysis. The overall cost per college-
level credit and remedial credit was approximately $520 (Barnett et al., 2020).  

Cost Estimates 
Indirect costs: Table A.7 shows the college-level and remedial credits earned and 
attempted. Using our estimates of costs per credit, the indirect costs for the test-score 
placement system are $5,420 per student compared to $5,040 per student for the 
algorithmic placement system. The lower costs of the latter stem from the net decrease 
of 0.72 in total credits attempted. Thus, the implementation of the algorithmic 
placement system results in an indirect cost reduction of $380 per student. 
 Student costs: Students do not pay all the costs associated with each credit 
attempted. The relevant costs for students are tuition and fees paid for these credits. 
Using IPEDS data for the six colleges, the cohort-weighted average for tuition and fees 
is 39% of total expenditures per credit (Barnett et al., 2020). Therefore, of the $520 cost 
per credit, students pay $200 and government funding covers the remaining $320. 
Consequently, as shown in Table A.8, students attempted fewer credits in total with the 
algorithmic placement system relative to the test-score placement system and therefore 
saved $150. 
 Direct costs: Table A.9 shows the direct costs to implement and operate the 
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algorithmic placement system and the test-score placement system for five years 
(amortized over cohorts). For a typical college cohort in the sample of 5,808 students, 
the cost of implementing the algorithmic placement system is $958,810. The cost of the 
test-score placement system is $174,240. These estimates imply an incremental cost per 
student of $140 for algorithmic placement. The remaining two columns show upper and 
lower bounds for this cost per student, which ranges from $70 to $360. This variation is 
driven by substantial fixed costs, so colleges with larger enrollments show much smaller 
per student costs. One implication of these findings is that costs could be reduced 
substantially with more efficient, centralized data collection. Minimizing hand data 
entry and centralizing high school student information into a single data system would 
help automate the algorithm’s estimation and reduce costs. 
 Total costs: We summarize the total costs—direct and indirect for both students and 
colleges— for each placement system in Table A.10. The total cost per student is $240 
less for the algorithmic placement system compared to the test-score placement system. 
This result is a consequence of the lower indirect costs due to fewer total credits 
attempted under the algorithmic placement system, which more than offsets the higher 
direct cost (see Table A.9). 
 The lower total costs of the algorithmic placement system suggest it is cost-effective 
from a social perspective relative to the test-score placement system: algorithmic 
placement is more effective regarding the number of college-level credits earned and its 
total cost is lower. As shown in Table A.10, the cost-per college credit earned is $110 
less for the algorithmic placement. 
 Finally, cost effectiveness from the colleges’ perspective is harder to establish. On the 
one hand, colleges must incur the higher costs to implement and operate the new 
placement method (as shown in Table A.9). On the other hand, we do not incorporate 
potential increases in net revenues from the additional coursework. These revenue 
changes will depend on the characteristics of each institution (e.g., enrollment numbers, 
funding strategy, etc.), which makes it more difficult to determine these changes relative 
to the status quo. However, as the algorithmic placement method's total cost is lower 
and leads to greater credit accumulation, we believe this system is likely cost-effective 
from each colleges' perspective relative to the test-score placement system as well. 
 Marginal Value of Public Funds: A conservative estimate of a student’s willingness 
to pay for algorithmic placement is their resulting savings: $150. This assumes there is 
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no effect on utility from avoiding remedial courses or attempting college-level courses. 
Most likely there is an additional opportunity cost or disutility to unnecessary remedial 
course taking.20 In the denominator, we balance the fixed and operational costs to public 
colleges by estimating the costs to implementing and operating the algorithmic system 
over five years, as described above: $140 per student. This cost is offset by the savings 
to the government from the reduced credit taking.21 Total costs are negative (see table 
A.10) and so the MVPF is infinite.  
 Lastly, colleges could also save money by not purchasing the ACCUPLACER exams, 
and administrators asked whether students could be placed via the algorithm as 
accurately without using these test scores. We examined the extent to which the 
algorithm would place students differently if test scores were not used for prediction. 
We find that placement rates would change substantially for math courses—by 18%—
however, for English courses, only 5% to 8% of placements would change. This finding is 
in line with the increased predictive value we find for math test scores over English test 
scores. 

7. Conclusion 

Our findings indicate that algorithmic placement, which incorporates multiple measures 
to predict college readiness, significantly impacts how colleges track students into either 
college-level or remedial courses. First, algorithmic placement allows colleges to choose 
cut points that explicitly target predicted placement rates and pass rates. Second, the 
algorithm leads to changes in the placement of students. Across the seven study 
colleges, more students were placed into college-level math and English courses without 
reductions in pass rates in either course. There were particularly large increases in 
college-level placements in English courses. By several measures, the algorithm is more 
accurate, more equitable, and less discriminatory than the widely used test-score 
placement system.  

 
20 One might argue some students might dislike taking college courses as well, however. 
21 As described above, the reduction in remedial credits reduces costs by $570 and the increase in college 
credits increases costs by $190 for a net cost of negative $380. Roughly 39% of this savings goes to 
students ($150) and the remainder is savings to the government ($230). The $140 cost to public colleges is 
therefore offset by the $230 savings to the government.  
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 While the algorithm’s predictive validity is greater than placement scores alone, the 
algorithms we developed could be improved. Most notably, our model was constrained 
by implementation in several ways. To produce rapid placement decisions, we had to 
embed our algorithm into existing systems, which restricted our modeling choices. We 
could not for instance, implement a non-linear model. Future models could also use 
richer transcript data. The colleges we worked with could not readily provide course-
level high school grades, which could be predictive of future performance as well. More 
generally, as colleges develop more consistent ways to record incoming student 
information, the ability to predict future performance should improve. 
 One question is how our results would differ if all students within a college were 
placed according to the algorithm. Our interviews with college administrators, 
department chairs, faculty and counselors at each college documented their impressions 
to the algorithm’s implementation. Generally, there was no perceived change in 
classroom composition. However, this could change if all students were placed via the 
algorithm, especially in English courses where placement changes were more significant. 
Prior research suggests this might result in improved academic outcomes for students 
(Duflo et al., 2011).  
 Our results have important implications because the high cost of remedial education 
falls onto students placed into these courses and indirectly onto taxpayers whose money 
helps subsidize public postsecondary institutions. As a result, there is both a private and 
social benefit to ensuring that remedial education is correctly targeted. Colleges 
recognize this, and some have begun to implement these placement algorithms. Long 
Beach City College (LBCC) created a placement formula that uses student high school 
achievement in addition to standardized assessment scores. The formula weights each 
measure based on how predictive it is of student performance in college courses (Long 
Beach City College, Office of Institutional Effectiveness, 2013). This paper provides 
evidence that these placement systems not only affect student outcomes through 
changes in the placement instrument, but also through colleges’ improved ability to 
target pass rates explicitly. Future research could test more intricate predictive models 
than we could implement in the current study, and perhaps focus on algorithms that 
predict treatment effects of each course rather than pass rates.  
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TABLES 
 
 

Table 1. Hypothetical Spreadsheet Provided to Colleges on Placement Projections 
Example Community College 
Math Success: C or 
above     

Minimum Probability 
of Success 

Percent Placed into 
College Level 

Percent Passing 
College Level 

Cohort 3, Status Quo 30% 50% 
45% 40% 60% 
55% 20% 70% 
65% 10% 75% 

      
Eng. Success: C or 
above     
Minimum Probability 
of Success 

Percent Placed into 
College Level 

Percent Passing 
College Level 

Cohort 3, Status Quo 40% 60% 
45% 75% 60% 
55% 60% 65% 
65% 20% 70% 

Notes: This table is a hypothetical version of the information presented to college 
faculty and administrators to help them choose a threshold for being placed into 
college-level course in math or English.  The placement algorithm outputs a 
probability of success in the college-level math and/or English course for each student. 
Colleges then choose what probability is the “minimum probability” acceptable for 
placement into the college-level course. Several possible minimum probabilities are 
shown in the leftmost column. The middle column and the rightmost then show the 
predicted percent of students placed into the college-level course and the predicted 
pass rate for those students, respectively, associated with the minimum probability 
shown in the same row. 
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Table 2. Sample Demographics by College 

  Overall 
College 

1 
College 

2 
College 

3 
College 

4 
College 

5 
College 

6 
College 

7 

Female 50% 58% 54% 53% 48% 51% 55% 46% 

Race         
   White 43% 80% 69% 56% 53% 36% 41% 24% 

   Asian 2% 1% 1% 1% 2% 5% 9% 2% 

   Black 20% 9% 17% 20% 23% 21% 31% 19% 

   Hispanic 20% 5% 3% 4% 11% 28% 14% 33% 

   Native American 1% 1% 1% 1% 2% 0% 1% 1% 

   Two or more races 3% 1% 3% 4% 6% 3% 3% 3% 

Age at entry 20.93 20.83 22.91 22.03 20.24 21.51 23.09 19.92 

Pell Grant recip. 43% 52% 47% 49% 42% 32% 57% 42% 

Total 12,526 671 1,228 1,817 1,996 1,756 343 4,715 
Notes: This table shows the demographic characteristics of study participants in each college. Sample is any student 
who took a placement exam in at least one subject and enrolled at one of the seven study colleges during the study 
period. 
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Table 3. Baseline Characteristics by Treatment Assignment 

  
Control 
Mean 

Treatment 
Mean 

Difference 
(T - C) 

P-value Obs. 

Enrollment 0.86 0.85 -0.01 0.29 12,526 
Female 0.50 0.50 0.01 0.47 11,883 
Race      
   White 0.44 0.42 -0.02 0.04 12,526 
   Asian 0.02 0.02 0.00 0.80 12,526 
   Black 0.19 0.20 0.02 0.03 12,526 
   Hispanic 0.19 0.20 0.01 0.16 12,526 
   Pacific Islander 0.00 0.00 0.00 0.91 12,526 
   Native American 0.01 0.01 0.00 0.50 12,526 
   Two or more races 0.04 0.03 0.00 0.24 12,526 
   Race Missing 0.10 0.10 0.00 0.83 12,526       
Age at entry 20.96 20.90 -0.05 0.63 12,526 
Pell Grant recip. 0.42 0.43 0.01 0.30 12,526 
TAP Grant recip. 0.31 0.31 0.00 0.90 12,526 
GED recip. 0.07 0.07 0.00 0.92 12,526 
HS GPA (100 scale) 77.96 78.13 0.17 0.32 7,857 
HS GPA missing 0.37 0.37 0.00 1.00 12,526 
ACCUPLACER Exam score     
   Arithmetic 33.35 34.18 0.84 0.16 10,187 
   Algebra 48.06 47.98 -0.09 0.87 10,187 
   College-level math 8.25 8.08 -0.17 0.75 3,655 
   Reading 58.05 58.12 0.07 0.91 12,526 
   Sentence skills 35.45 34.10 -1.35 0.08 10,709 
   Written exam 3.87 3.93 0.06 0.32 10,968 
Total 6,133 6,393     12,526 
Notes: Means and Treatment – Control differences are rounded to the nearest hundredth of a point. Sample is 
any student who took a placement exam in at least one subject and enrolled at one of the seven study colleges 
during the study period. The difference column shows estimates from a regression of the baseline characteristic 
shown on the lefthand side on a treatment indicator and strata fixed effects (indicators for each college). 
Observation counts vary for exam scores because students do not necessarily take all exams and gender and HS 
GPA are not available for all students. 
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Table 4. Changes in Placement for Treatment-Group Students 

  (1) (2) (3) (4) (5) 

  

Took 
Placement 

Exam 

Same 
Placement as 
Test Score 

System 

Placement 
Changed from 

Test Score 
System 

Higher 
Placement 
than Test 

Score System 

Lower 
Placement 
than Test 

Score System 
  Math Placement 
% of 
sample 

81.71% 58.58% 23.13% 15.45% 7.68% 

N 5,224 3,745 1,479 988 491 

  English Placement 
% of 
sample 

100% 45.21% 54.79% 49.05% 5.74% 

N 6,393 2,890 3,503 3,136 367 
Notes: Sample is restricted to treatment group students: students who took a placement exam in at least one 
subject and enrolled at one of the seven study colleges during the study period and were assigned to the treatment 
group. Colleges exempted a share of students from placement tests based on certain criteria, shown in column (1). 
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Table 5. Effect on Math and English College Coursework 

  (1) (2) (3) (4) (5) (6) 

 
Placed 
Math 

Enrolled 
Math 

Passed 
Math 

Placed 
English 

Enrolled 
English 

Passed 
English 

 1st-Term 1st-Term 1st-Term 1st-Term 1st-Term 1st-Term 

       
Treatment 0.066*** 0.026*** 0.019*** 0.322*** 0.136*** 0.070*** 

 (0.008) (0.008) (0.007) (0.008) (0.009) (0.009) 
       

Control Mean 0.376 0.280 0.155 0.492 0.471 0.292 

       
Observations 9,527 9,527 9,527 10,033 10,033 10,033 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Sample is any student who took a placement exam in at least one subject and enrolled at one of the seven study 
colleges during the study period. Columns (1)-(3) restrict to students who took the math exam. Columns (4)-(6) 
restrict to students who took the English exam. All models include fixed effects for college (strata), controls for 
demographic indicators (race, gender and age, Pell recipient status), GED indicator, and calculated math and 
English algorithm scores. 
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Table 6. Effect on College-Course Outcomes 

  (1) (2) (3) (4) (5) (6) 

 
Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

       

Treatment -1.095*** 1.287*** 0.562* -1.068*** 1.865*** 1.312*** 

 (0.072) (0.295) (0.292) (0.105) (0.406) (0.393) 
    

   

Control Mean 3.539 26.19 16.80 4.141 24.42 15.21 

    
   

Sample All All All Placed in 
Math and 
English 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

       

Observations 12,526 12,526 12,526 6,930 6,930 6,930 

Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Columns (1)-(3) use the full sample and columns (4)-(6) restrict the sample to students who were placed in both 
math and English. All models include fixed effects for college (strata), controls for demographic indicators (race, 
gender and age, Pell recipient status), GED indicator, and calculated math and English algorithm scores. Credits 
attempted and credits earned are total credits attempted or earned by students, respectively. 
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Table 7. Error Rates of the Algorithm v. Test-Score Placement Systems 

    

Math Pass 
Rate 

(1st-term) 

English 
Pass Rate 
(1st-term) 

 Math Pass 
Rate 

(Ever) 

 English 
Pass Rate 

(Ever) 

Treatment 

Placed in College-
Level by Algorithm, 
Counterfactual was 
Remedial 

0.607 0.626 0.501 0.532 

Control 

Placed in College-
level by Test Scores, 
Counterfactual was 
Remedial 

0.442 0.496 0.401 0.408 

Notes: The first row restricts the sample to students assigned to the treatment group who were placed by 
the algorithm into a college-level course, but their counterfactual test-score placement would have been 
the remedial course. The second row restricts the sample to students assigned to the control group who 
were placed by the test-score system (ACCUPLACER) into a college-level course, but their algorithmic 
placement would have been the remedial course. Each column shows pass rates by subject for the first 
term and ever. Pass rates are college-level credits earned divided by college-level credits attempted in the 
corresponding period and subject. 
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Table 8. Longer-Run Effects: Fall 2016 Cohort 

  (1) (2) (3) (4) (5) (6) 

 
Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

       

Treatment -1.193*** 2.594*** 1.717*** -1.227*** 2.659*** 2.144*** 

 (0.129) (0.562) (0.568) (0.166) (0.677) (0.670) 
    

   

Control Mean 3.916 32.8 21.67 4.601 30.06 19.00 
       

Sample All All All 
Placed in 
Math and 
English 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

       

Observations 4,685 4,685 4,685 3,219 3,219 3,219 

Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Columns (1)-(3) uses the full sample and columns (4)-(6) restrict the sample to students who were placed in both 
math and English. All models include fixed effects for college (strata), controls for demographic indicators (race, 
gender and age, Pell recipient status), GED indicator, and calculated math and English algorithm scores. Credits 
attempted and earned are total credits attempted and earned by students, respectively. 
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Table 9. Subgroup Analysis on College-Course Outcomes 
  White Hispanic Black Male Female Pell Non-Pell        
Placed into College 
Math 

0.107*** 0.036** 0.054*** 0.013 0.140*** 0.056*** 0.078*** 
 (0.013) (0.015) (0.019) (0.012) (0.012) (0.012) (0.011)          

Control Mean 0.400 0.418 0.287 0.426 0.336 0.331 0.411 
Observations 3,778 2,088 1,792 4,369 4,460 4,426 5,027         
Placed into College 
English 

0.297*** 0.309*** 0.385*** 0.318*** 0.335*** 0.289*** 0.351*** 
 (0.013) (0.019) (0.019) (0.012) (0.012) (0.013) (0.011)          

Control Mean 0.540 0.505 0.374 0.493 0.491 0.480 0.500 
Observations 4,068 2,065 2,039 4,872 4,520 4,565 5,438        
College Credits 
Earned 

0.144 0.767 0.918 -0.060 1.186*** 1.284*** -0.079 
 (0.484) (0.659) (0.605) (0.432) (0.438) (0.456) (0.375)         

Control Mean 21.09 16.69 12.44 17.32 18.10 18.88 15.07 
Observations    5,379 2,484 2,467 5,951 5,932 5,728 6,798          
Remedial Credits 
Attempted 

-0.686*** -0.791*** -0.745*** -0.557*** -0.831*** -0.829*** -0.517*** 
 (0.065) (0.114) (0.114) (0.064) (0.071) (0.075) (0.054)          

Control Mean 1.690 2.227 2.108 1.687 2.029 2.318 1.299 
Observations 5,379 2,484 2,467 5,951 5,932 5,728 6,798 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Each column restricts the sample to the subgroup in the column header. Each cell is from a separate regression. All models 
include fixed effects for college (strata), controls for demographic indicators (race, gender and age, Pell recipient status), GED 
indicator, and calculated math and English algorithm values. Credits attempted and earned are total credits attempted and 
earned by students, respectively. 
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Table 10. Subgroup Analysis on Pass Rates 
  White Hispanic Black Male Female Pell Non-Pell        
Total Credits’ Pass Rate 
(1st-term) 

-0.020* 0.002 -0.017 -0.011 -0.002 -0.012 -0.000 
 (0.011) (0.017) (0.018) (0.011) (0.011) (0.011) (0.011)          

Control Mean 0.709 0.623 0.534 0.624 0.673 0.643 0.652 
Observations 4,686 2,167 2,062 5,134 4,901 5,310 4,725         
Total Credits’ Pass Rate 
(Ever) 

-0.015 0.010 -0.007 -0.012 0.008 -0.003 -0.001 
 (0.010) (0.014) (0.014) (0.009) (0.009) (0.009) (0.010)          

Control Mean 0.600 0.472 0.411 0.498 0.555 0.508 0.547 
Observations 4,924 2,342 2,221 5,417 5,270 5,703 4,984         
Total Math Credits’ Pass 
Rate (Ever) 

-0.009 -0.008 -0.039 -0.029* 0.012 -0.012 -0.005 
 (0.016) (0.023) (0.026) (0.015) (0.016) (0.015) (0.016)          

Control Mean 0.580 0.488 0.445 0.492 0.576 0.514 0.550 
Observations 2,940 1,425 1,040 3,200 2,921 3,136 2,985         
Total English Credits’ 
Pass Rate (Ever) 

-0.036*** 0.001 -0.005 -0.028** -0.001 -0.010 -0.020 
 (0.013) (0.019) (0.020) (0.013) (0.012) (0.012) (0.013)          

Control Mean 0.667 0.531 0.466 0.559 0.618 0.563 0.617 
Observations 4,154 2,020 1,804 4,548 4,430 4,864 4,114 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Each column restricts the sample to the subgroup in the column header. Each cell is from a separate regression. All models 
include fixed effects for college (strata), controls for demographic indicators (race, gender and age, Pell recipient status), 
GED indicator, and calculated math and English algorithm values. Pass rates are calculated as total college credits earned 
divided total college credits attempted. 
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Table 11. Selective Labels: Delta Estimates 

  White−Black White−Hispanic Male−Female 

Panel A: Test Score Placement College-level Math 
∆1 0.188***  0.154***  0.135***  

 (0.033) (0.030) (0.025) 
∆0 0.146***  0.138***  0.128***  

 (0.031) (0.029) (0.023) 

	    

Panel B: Algorithm Placement College-level Math 
∆1 0.068***  0.024 0.019 

 (0.019) (0.016) (0.014) 
∆0 0.060***  0.014 0.020 

 (0.019) (0.016) (0.013) 

	    

Panel C: Test Score Placement College-level English 
∆1 0.213***  0.128***  -0.027 

 (0.036) (0.039) (0.029) 
∆0 0.213***  0.128***  -0.027 

 (0.036) (0.039) (0.029) 

    
Panel D: Algorithm Placement College-level English 
∆1 0.004 0.000 -0.004 

 (0.004) (0.000) (0.003) 
∆0 0.005 0.000 -0.005 
  (0.005) (0.000) (0.004) 

 

Notes: Bootstrap standard errors shown in parentheses (reps. = 1,000). *** p<0.01, ** p<0.05, * p<0.10. 
Each cell is an estimation of ∆ from Equation [5] for a placement (specified in the Panel) and 
demographic pair (specified in the Column). The estimation in each cell is restricted to students in 
College 5 eligible for placement in Math (Panels A and B) or English (Panels C and D). See Table 1 for 
descriptive statistics of College 5. ∆1 and ∆0 are calculated by imputing missing values for passing (1) or 
not (0) the college-level course, respectively. 
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Table 12. Selective Labels: Interaction Terms from Eq. [6] 

  (1) (2) 

 Pass College-level 
English 

Pass College-level 
Math 

   

selected × age -0.010 0.002 

 (0.009) (0.007) 
selected × 1[25 < age] 0.134 -0.172 

 (0.148) (0.128) 
selected × HS GPA -0.021*** -0.008 

 (0.008) (0.005) 
selected × ACPL Algebra -0.020 -0.015 

 (0.079) (0.053) 
selected × ACPL Arithmetic -0.002 -0.052 

 (0.052) (0.078) 
selected × ACPL Reading -0.020 0.102** 

 (0.068) (0.050) 
selected × ACPL Written -0.226*** -0.021 

 (0.081) (0.056) 
selected × ACPL Sentence -0.008** -0.006** 

 (0.003) (0.002) 
selected × GED 0.134 0.264** 

 (0.148) (0.118) 

   
Observations 903 1,560 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * 
p<0.10.  
This table reports the interaction terms for Eq. [6] in the text for passing the 
college-level English course and math course in Column (1) and (2), respectively. 
The estimation in each column is restricted to students in College 5 eligible for 
placement in English in Column (1) or Math in Column (2). See Table 1 for 
descriptive statistics of College 5. All models include the reported interaction terms 
as well as each variable separably, and indicator variables for missing data and 
their interactions with selectedi. 
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Table 13: Characteristics of Those Who Benefit from English Remedial Placement 

  

Do Not Benefit 
from English 

Remedial 
Placement 

Benefit from 
English 

Remedial 
Placement Difference P-value Obs. 

Female 0.500 0.482 -0.018 0.354 11,883 
      

Race      
   White 0.434 0.364 -0.070 0.000 12,526 
   Asian 0.025 0.017 -0.008 0.100 12,526 
   Black 0.193 0.260 0.067 0.000 12,526 
   Hispanic 0.198 0.200 0.002 0.884 12,526 
   Other 0.051 0.042 -0.009 0.198 12,526 

      
Age at entry 20.93 20.85 -0.081 0.702 12,526 
Pell Grant recip. 0.453 0.516 0.063 0.001 12,526 
TAP Grant recip. 0.309 0.332 0.022 0.203 12,526 
GED recip. 0.070 0.045 -0.025 0.001 12,526 
HS GPA (100 scale) 78.44 72.65 -5.794 0.000 7,857 

      
ACCUPLACER Exam score      
   Arithmetic 33.83 33.02 -0.805 0.416 10,187 
   Algebra 48.58 39.97 -8.609 0.000 10,187 
   College-level math 8.282 3.719 -4.563 0.000 3,655 
   Reading 57.96 59.95 1.982 0.039 12,526 
   Sentence skills 34.61 36.76 2.144 0.002 10,709 
   Written exam 3.879 4.171 0.292 0.000 10,968 

      
Total Obs. 11,751 775     12,526 

 

Notes: Sample includes any student who took the English placement exam at one of the five study 
colleges and got a different placement from the ACCUPLACER and the algorithmic systems. Currently 
dual enrollment students and students who tested into ESL courses are excluded. The difference column 
shows estimates from a regression of the baseline characteristic shown on the lefthand side on a “benefits 
from remedial placement” indicator and strata fixed effects (indicators for each college). The causal forest 
model (Athey et al., 2019) was trained to predict the conditional average treatment effect of English 
remedial placement on the total number of credits earned. Results do not vary meaningfully from those 
obtained using the test set sample. 
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Table 14: Characteristics of Those Who Benefit from Math Remedial Placement  

  

Do Not Benefit 
from Math 
Remedial 
Placement 

Benefit from 
Math 

Remedial 
Placement Difference P-value Obs. 

Female 0.499 0.498 -0.001 0.938 11,883 
      

Race      
   White 0.430 0.426 -0.004 0.791 12,526 
   Asian 0.023 0.035 0.012 0.046 12,526 
   Black 0.199 0.177 -0.022 0.091 12,526 
   Hispanic 0.198 0.200 0.002 0.897 12,526 
   Other 0.050 0.053 0.003 0.721 12,526 

      
Age at entry 20.99 20.40 -0.581 0.016 12,526 
Pell Grant recip. 0.457 0.459 0.002 0.887 12,526 
TAP Grant recip. 0.313 0.284 -0.029 0.054 12,526 
GED recip. 0.072 0.035 -0.037 0.000 12,526 
HS GPA (100 scale) 77.62 81.31 3.692 0.000 7,857 

      
ACCUPLACER Exam score      
   Arithmetic 34.22 30.54 -3.67 0.000 10,187 
   Algebra 46.42 59.74 13.33 0.000 10,187 
   College-level math 5.413 18.08 12.66 0.000 3,655 
   Reading 58.59 53.43 -5.16 0.000 12,526 
   Sentence skills 37.06 9.00 -28.06 0.000 10,709 
   Written exam 3.921 3.698 -0.223 0.004 10,968 

      
Total Obs. 11,301 1,225     12,526 

 

Notes: Sample includes any student who took the math placement exam at one of the five study colleges 
and got a different placement from the ACCUPLACER and the algorithmic systems. Currently dual 
enrollment students and students who tested into ESL courses are excluded. The difference column shows 
estimates from a regression of the baseline characteristic shown on the lefthand side on a “benefits from 
remedial placement” indicator and strata fixed effects (indicators for each college). The causal forest 
model (Athey et al., 2019) was trained to predict the conditional average treatment effect of math 
remedial placement on the total number of credits earned. Results do not vary meaningfully from those 
obtained using the test set sample. 
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APPENDIX TABLES 
 

Table A.1. College Characteristics 
 Institution 
 Cayuga Jefferson Niagara Onondaga Rockland Schenectady Westchester 

GENERAL INFORMATION 
Student Population 7,001 5,513 7,712 23,984 10,098 8,458 22,093 
Full-time Faculty 69 80 151 194 122 79 215 
Part-time Faculty 170 177 0 480 409 0 2 
Student/Faculty Ratio 20 18 16 23 23 23 16 
% Receiving Financial Aid 92% 91% 92% 92% 56% 92% 70% 
DEMOGRAPHICS  
Race/ethnicity:  
American Indian/Alaska Native 0% 1% 1% 1% 0% 1% 1% 
Asian 1% 2% 1% 3% 5% 7% 4% 
Black 5% 7% 11% 12% 18% 14% 21% 
Hispanic/Latino 3% 11% 3% 5% 20% 6% 32% 
Native Hawaiian or Other 0% 0% 0% 0% 0% 1% 0% 
White 85% 73% 80% 49% 39% 67% 33% 
Multi-Ethnic 2% 3% 2% 3% 2% 2% 2% 
Race/Ethnicity Unknown 3% 3% 1% 27% 15% 2% 5% 
Non-Resident Alien 1% 1% 0% 0% 1% 0% 1% 
Gender:  
Female 60% 58% 59% 52% 54% 53% 53% 
Male 40% 42% 41% 48% 46% 47% 47% 
Age:  
Under 18 30% 17% 19% 24% 10% 37% 1% 
18-24 44% 52% 60% 55% 63% 40% 69% 
25-65 26% 31% 21% 21% 26% 23% 30% 
RETENTION/GRADUATION RATES  
Retention         
      Full-Time Students 56% 55% 63% 57% 68% 56% 64% 
      Part-Time Students 28% 30% 47% 34% 56% 50% 53% 
Three-Year Graduation Rate 24% 27% 28% 20% 29% 20% 15% 
Transfer Out Rate 18% 19% 18% 22% 19% 22% 18% 
Notes: This table shows summary statistics for all students enrolled at the seven study colleges from historical data. Data 
are from the U.S. Department of Education, National Center for Education Statistics, IPEDS, Fall 2015, Institutional 
Characteristics. 
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Table A.2. Math Algorithm Components by College 

  
HS 

GPA 

Years since 
HS 

Graduation 

 
GED 
Status 

Regents 
Math 
Score 

SAT 
Math 
Score 

Arithmetic 
Test Score 

Algebra 
Test 
Score 

College-
Level 

Test Math 

College 1 X X X   X X X 
College 2 X X X X X X X X 
College 3 X X X   X X  
College 4   

   
   

College 5 X X  
  X X X 

College 6         
College 7 X X X       X   
Notes: This table indicates what variables colleges used in their respective math algorithm. Test score variables are from 
ACCUPLACER placement exams. HS abbreviates high school.  

 
 
 
 

Table A.3. English Algorithm Components by College 

  
HS 

GPA 
HS 

Rank 

Years Since 
HS 

Graduation 

 
GED 
Status 

Reading 
Score 

Sentence 
Skills Score 

Writing 
Score 

College 1 X  X X X X  
College 2 X  X X X X X 
College 3 X  X X X  X 
College 4 X X X X X X X 
College 5 X  X  X X X 
College 6 X  X X    
College 7 X   X X X     
Notes: This table indicates what variables colleges used in their respective English algorithm. Test score 
variables are from ACCUPLACER or other placement exams. HS abbreviates high school. 
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Table A.4. Math Algorithm Models 
 Model 1 Model 2 Model 3 Model 4 
HS GPA1 0.035***  0.028*** 0.030*** 
 (0.002)  (0.003) (0.002) 
Missing GPA2 2.822***  2.270*** 2.583*** 
 (0.195)  (0.209) (0.210) 
ACPL Algebra3  0.006*** 0.004*** 0.004*** 
  (0.001) (0.001) (0.001) 
ACPL Arithmetic Missing2  0.056 0.038 0.065 
  (0.040) (0.041) (0.042) 
ACPL Algebra Missing2  0.634*** 0.361** 0.335* 
  (0.141) (0.137) (0.140) 
ACPL College-level Math 
Missing2  

-0.087 -0.088 -0.084 

  (0.055) (0.051) (0.051) 
Years Since HS Graduation    0.020*** 
    (0.004) 
HS Graduation Year 
Missing2    

-0.056 

    (0.068) 
GED2    -0.192** 
    (0.071) 
Missing Diploma Type2    0.121 
    (0.100) 
Constant -2.337*** 0.038 -2.048*** -2.303*** 
 (0.192) (0.122) (0.217) (0.213) 
N 1,166 1,166 1,166 1,166 
R2 0.125 0.105 0.176 0.207 
AIC 1,538.4 1,568.6 1,475.5 1,439.5 
1 100-point scale 
2 Binary indicator 
3 Test score range 20-120 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
This table shows results from regression of the covariates listed on an indicator for getting a C or better in 
the college-level math course. Models 1 - 3 include different subsets of covariates, with the full model 
shown in Model 4. 
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Table A.5. English Algorithm Models 
 Model 1 Model 2 Model 3 Model 4 
HS GPA1 0.022***   0.022*** 0.024*** 

 (0.001)  (0.001) (0.001) 
Missing GPA2 1.774***  1.761*** 1.959*** 

 (0.103)  (0.103) (0.114) 
ACPL Reading3  0.001* 0.001* 0.001 

  (0.001) (0.001) (0.001) 
ACPL Sentence Skills3  0.000 0.000 0.000 

  (0.001) (0.001) (0.001) 
ACPL Written Exam4  0.000 -0.002 -0.001 

  (0.002) (0.002) (0.002) 
ACPL Reading Missing2  0.315*** 0.332*** 0.210** 

  (0.073) (0.074) (0.077) 
ACPL Sentence Skills Missing2  -0.027 -0.147* -0.154* 

  (0.077) (0.074) (0.074) 
ACPL Written Exam Missing2  0.021 0.008 0.017 

  (0.027) (0.026) (0.025) 
Years Since HS Graduation    0.009*** 

    (0.001) 
HS Graduation Year Missing2    0.041 

    (0.087) 
GED2    -0.190* 

    (0.083) 
Missing Diploma Type2    0.032 

    (0.094) 
High School Rank Percentile    0.000 
    (0.000) 
Missing High School Rank2    -0.006 
    (0.041) 
Constant -1.147*** 0.478*** -1.218*** -1.301*** 

 (0.101) (0.060) (0.111) (0.118) 
N 3,786 3,786 3,786 3,786 
R2 0.072 0.006 0.078 0.095 
AIC 4,893.2 5,161.4 4,879.8 4,823.8 
1 100-point scale 
2 Binary indicator 
3 Test score range 20-120 
4 Test score range 1-8 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
This table shows results from regression of the covariates listed on an indicator for getting a C or better 
in the college-level English course. Models 1 - 3 include different subsets of covariates, with the full 
model shown in Model 4. 
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Table A.6. Non-English and Non-Math Credits 
  (1) (2) (3) (4) 

 
Non-

English/Math 
Credits 

Attempted 

Non-
English/Math 

Credits 
Earned 

Non-
English/Math 

Credits 
Attempted 

Non-
English/Math 

Credits 
Earned 

     

Treatment 0.915*** 0.424* 1.360*** 0.974*** 

 (0.237) (0.235) (0.319) (0.312) 
   

  

Control Mean 19.31 12.81 17.64 11.43 

   
  

Sample All All 
Placed in 
Math and 
English 

Placed in 
Math and 
English 

     

Observations 12,526 12,526 6,930 6,930 
Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
Columns (1)-(2) is the full sample and columns (3)-(4) restricts the sample to students who were placed 
in both math and English. All models include fixed effects for college (strata), controls for demographic 
indicators (race, gender and age, Pell recipient status), GED indicator, and calculated math and English 
algorithm values. Credits attempted and earned are total credits attempted and earned by students. 
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Table A.7. Impacts on Credits Attempted and Earned. Full Sample 
Per-student outcomes Control Treatment  Difference 

Remedial credits:   
 

      Attempted 3.539 2.444 -1.095*** 
      Earned 1.761 1.101 -0.660*** 
College credits in 
math/English:   

 

      Attempted 6.889 7.260 0.371*** 
      Earned 3.986 4.124 0.138* 
Notes: *** p<0.01, ** p<0.05, * p<0.10. 
All models include fixed effects for each college, controls for demographic indicators 
including race, gender and age, Pell recipient status, GED indicator, and calculated 
math and English algorithm values. 

 
 
 
 
 
 
 

Table A.8. Changes in Total Credits Attempted and Costs for Students 

  Treatment Effect 

Credits attempted relative to status quo -0.724 
Difference in credits paid by students -$150 
SOURCE: Table A.5; authors’ calculations. Cost figures rounded to nearest 10. 
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Table A.9. Costs for Implementation and Operation of the Algorithmic Placement System 

  Range Per College 

  
Total 

(six colleges) 

Lower Per-student 
Incremental Cost 

Bound  

Upper Per-student 
Incremental Cost 

Bound  

Students per semester 5,808 2,750 505 
Total Placement Cost:    
      Algorithm  $958,810  $268,890  $196,170  
      Test Score Placement $174,240  $82,590  $15,150  
New placement incremental cost:   
      Per semester $784,560  $186,300  $181,020  
      Per student $140  $70  $360  
Notes: 2016 dollars. Present values (discount = 3%). Rounded to $10. Ingredients information on full-time equivalents 
is from interviews with key personnel at six colleges. Lower and upper bounds represent highest and lowest per-student 
incremental costs across the six colleges. Cost data not available for one college. Costs amortized over cohorts. Student 
cohorts rounded to nearest 10. Total placement cost includes all costs to implement and administer the placement test; 
personnel (i.e., IT, program, senior/faculty, administrative support, and evaluator’s time), fringe benefits, and 
overheads/facilities. 
IT personnel salary data from https://www.cs.ny.gov/businesssuite/Compensation/Salary-
Schedules/index.cfm?nu=PST&effdt=04/01/2015&archive=1&fullScreen. 
Program personnel annual salary (step 4, grade 13) from https://www.suny.edu/media/suny/content-
assets/documents/hr/UUP_2011-2017_ProfessionalSalarySchedule.pdf. 
Senior/faculty midpoint MP-IV https://www.suny.edu/hr/compensation/salary/mc-salary-schedule/ 
https://www.cs.ny.gov/businesssuite/Compensation/Salary-
Schedules/index.cfm?nu=CSA&effdt=04/01/2015&archive=1&fullScreen. 
Evaluator’s time estimated from timesheets. Fringe benefits uprated from ratio of fringe benefits to total salaries 
(IPEDS data (2013, 846 public community colleges). Overheads/facilities uprated from ratio of all other expenses to 
total salaries (IPEDS data (2013, 846 public community colleges). Cost to administer placement test from Rodríguez et 
al. (2014). 
New placement incremental cost is the difference between the test-score placement system and the new, algorithmic 
placement system’s total placement costs. More than two-thirds of the new placement incremental costs are 
implementation costs, and approximately 30% are operating costs ($40 per-student), which refer to running of new 
placement system after initial algorithm has been developed and tested.  

 

  

https://www.cs.ny.gov/businesssuite/Compensation/Salary-Schedules/index.cfm?nu=PST&effdt=04/01/2015&archive=1&fullScreen
https://www.cs.ny.gov/businesssuite/Compensation/Salary-Schedules/index.cfm?nu=PST&effdt=04/01/2015&archive=1&fullScreen
https://www.suny.edu/media/suny/content-assets/documents/hr/UUP_2011-2017_ProfessionalSalarySchedule.pdf
https://www.suny.edu/media/suny/content-assets/documents/hr/UUP_2011-2017_ProfessionalSalarySchedule.pdf
https://www.suny.edu/hr/compensation/salary/mc-salary-schedule/
https://www.cs.ny.gov/businesssuite/Compensation/Salary-Schedules/index.cfm?nu=CSA&effdt=04/01/2015&archive=1&fullScreen
https://www.cs.ny.gov/businesssuite/Compensation/Salary-Schedules/index.cfm?nu=CSA&effdt=04/01/2015&archive=1&fullScreen
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Table A.10. Cost-Effectiveness Analysis: Social Perspective 

Per-student Costs Control Treatment Difference 

Direct cost: Placement $30  $170  $140  
    

Indirect cost: Attempted remedial credits $1,840  $1,270  -$570 
    

Indirect cost: Attempted math and 
English college credits 

$3,580  $3,770  $190  

    

Total Cost $5,450  $5,210  -$240 
   

 

Earned math and English college credits 3.986 4.124 0.138 
   

 

Cost per earned college credit $1,370  $1,260  -$110 
SOURCE: Tables A.5 and A.7 and authors’ calculations. Cost figures rounded to nearest 10. 

 


